

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: VIII

SUB.: MATHS

DATE:20-05-2021

CUBE AND CUBE ROOTS

Cube number or Perfect cubes: It is a number which is the product of three same numbers.

Example: Cube number of 2 will be $2 \ge 2 \ge 8$. Thus, 8 is a cube number.

Cubes of some natural numbers:

Number	Cube	Number	Cube
1	$1 \ge 1 \ge 1 = 1$	11	11 x 11 x 11 = 1331
2	$2 \ge 2 \ge 2 = 8$	12	12 x 12 x 12 = 1728
3	$3 \times 3 \times 3 = 27$	13	13 x 13 x 13 = 2197
4	$4 \times 4 \times 4 = 64$	14	$14 \ge 14 \ge 14 = 2744$
5	$5 \ge 5 \ge 5 = 125$	15	15 x 15 x 15 = 3375
6	$6 \ge 6 \ge 6 \ge 216$	16	16 x 16 x 16 = 4096
7	7 x 7 x 7 = 343	17	17 x 17 x 17 = 4913
8	$8 \times 8 \times 8 = 512$	18	18 x 18 x 18 = 5832
9	$9 \ge 9 \ge 9 \ge 729$	19	19 x 19 x 19 = 6859
10	10 x 10 x 10 = 1000	20	20 x 20 x 20 = 8000

Properties of Cube Numbers:

1. The cube of an even number will always be an even number.

Example: $8^3 = 512$, $12^3 = 1728$, etc.

2. The cube of odd number will always be an odd number.

Example: $7^3 = 343$, $19^3 = 6589$, etc.

3. If the cube number have x at its one's digit or unit's place then it always end with the digit as shown in the table below:

Unit's digit of number	Last digit of its cube number	Example
1	1	$11^3 = 1331, 21^3 = 9261,$ etc.

2	8	$2^3 = 8, 12^3 = 1728, 32^3 = 32768$, etc.
3	7	$13^3 = 2197, 53^3 = 148877,$ etc.
4	4	$24^3 = 13824, 74^3 = 405224$, etc.
5	5	$15^3 = 3375, 25^3 = 15625,$ etc.
6	6	$6^3 = 216, 26^3 = 17576$, etc.
7	3	$17^3 = 4913, 37^3 = 50653$, etc.
8	2	$8^3 = 512, 18^3 = 5832$, etc.
9	9	$19^3 = 6859, 39^3 = 59319,$ etc.
10	20	$10^3 = 1000, 20^3 = 8000,$ etc.

Example 1: Find the one's digit for 27.

Solution: As the last digit of given number is 7, So the one's digit for 27's cube number will be 3.

Example 2: Find the one's digit for 149.

Solution: As the last digit of given number is 9, So the one's digit for 149's cube number will be 9.

Interesting patterns of Cube Number:

1. Addition of consecutive odd numbers will give Cube Number-

13	=	1	=	1
23	=	8	=	3 + 5
3 ³	=	27	=	7 + 9 + 11
43	=	64	=	13 + 15 + 17 + 19
5 ³	=	125	=	21 + 23 + 25 + 27 + 29

2. Cubes and their prime factors-

The prime factors of any cube number will be in pair of 3.

Example:

(i) $4^3 = 64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^3 \times 2^3$

 $(ii)12^3 = 1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^3 \times 2^3 \times 3^3$

Note:

(i) If any prime factor is not in pair of 3, then it will not be a perfect cube.

(ii) Numbers like 1729, 4104, 13832, are known as Hardy – Ramanujan

(iii) Numbers. They can be expressed as sum of two cubes in two different ways.

Example 1: Is 128 a perfect cube number?

Example 2: Find the smallest number by which 675 must be multiplied to obtain a perfect cube.

Solution: On finding prime factors of 675, we have $675 = 3 \times 3 \times 3 \times 5 \times 5$.

We can see that, triplets of 5 is missing. Hence, on multiplying given number by 5 we can have a perfect cube number. Thus, $675 \times 5 = 3375$ which is a perfect cube number.

Example 3: Find the smallest number by which 192 must be divided to obtain a perfect cube.

Solution: On finding prime factors of 192, we have $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$.

We can see that, triplets of 3 is missing while other numbers have triplets. Hence, on dividing given number by 3 we can have a perfect cube number.

Thus, 192 / 3 = 64 which is a perfect cube number.